1,787 research outputs found

    Looking for a Rational Thermodynamics in the late XIX century

    Get PDF
    From Rudolf Clausius’ classical version of Thermodynamics two different traditions of research really emerged. If James C. Maxwell and Ludwig Boltzmann pursued the integration of thermodynamics with the kinetic theory of gases, others relied on a macroscopic and more abstract approach, which set aside specific mechanical models. Starting from 1869, the French engineer François Massieu was able to demonstrate that thermodynamics could be based on two “characteristic functions” or potentials. Josiah W. Gibbs and Hermann von Helmholtz exploited the structural analogy between Mechanics and Thermodynamics: from a mathematical point of view, Helmholtz’s “free energy” was nothing else but Gibb’s first potential. In the meantime, in 1880, the young German physicist Max Planck aimed at filling the gap between thermodynamics and the theory of elasticity. Five years later Arthur von Oettingen put forward a formal theory, where mechanical work and fluxes of heat represented the starting point of a dual mathematical structure. In 1891 Pierre Duhem generalized the concept of “virtual work” under the action of “external actions” by taking into account both mechanical and thermal actions. Between 1892 and 1894 his design of a generalized Mechanics based on thermodynamics was further developed: ordinary mechanics was looked upon as a specific instance of a more general science

    Characterizing the Hadley circulation response through regional climate feedbacks

    Get PDF
    The robust weakening of the tropical atmospheric circulation in projections of anthropogenic warming is associated with substantial changes in regional and global climate. The present study focuses on understanding the response of the annual-mean Hadley circulation from a perspective of interactions between climate feedbacks and tropical circulation. Simulations from an ensemble of coupled ocean–atmosphere models are used to quantify changes in Hadley cell strength in terms of feedbacks, radiative forcing, ocean heat uptake, atmospheric eddies, and gross moist stability. Climate feedbacks are calculated for the model integrations from phase 5 of CMIP (CMIP5) using radiative kernels. Tropical mean circulation is found to be reduced by up to 2.6% K^(−1) for an abrupt quadrupling of carbon dioxide concentration. The weakening is characterized by an increase in gross moist stability, by an increase in eddy heat flux, and by positive extratropical feedbacks, such as those associated with lapse rate and sea ice response. Understanding the impact of radiative feedbacks on the large-scale circulation provides a framework for constraining uncertainty in the dynamic climate response, including the hydrological cycle

    Diversity of neglected and underutilized plant species (NUS) in perspective

    Get PDF

    Quantum limit in resonant vacuum tunneling transducers

    Full text link
    We propose an electromechanical transducer based on a resonant-tunneling configuration that, with respect to the standard tunneling transducers, allows larger tunneling currents while using the same bias voltage. The increased current leads to an increase of the shot noise and an increase of the momentum noise which determine the quantum limit in the system under monitoring. Experiments with micromachined masses at 4.2 K could show dominance of the momentum noise over the Brownian noise, allowing observation of the quantum-mechanical noise at the mesoscopic scale

    Algebraic-matrix calculation of vibrational levels of triatomic molecules

    Full text link
    We introduce an accurate and efficient algebraic technique for the computation of the vibrational spectra of triatomic molecules, of both linear and bent equilibrium geometry. The full three-dimensional potential energy surface (PES), which can be based on entirely {\it ab initio} data, is parameterized as a product Morse-cosine expansion, expressed in bond-angle internal coordinates, and includes explicit interactions among the local modes. We describe the stretching degrees of freedom in the framework of a Morse-type expansion on a suitable algebraic basis, which provides exact analytical expressions for the elements of a sparse Hamiltonian matrix. Likewise, we use a cosine power expansion on a spherical harmonics basis for the bending degree of freedom. The resulting matrix representation in the product space is very sparse and vibrational levels and eigenfunctions can be obtained by efficient diagonalization techniques. We apply this method to carbonyl sulfide OCS, hydrogen cyanide HCN, water H2_2O, and nitrogen dioxide NO2_2. When we base our calculations on high-quality PESs tuned to the experimental data, the computed spectra are in very good agreement with the observed band origins.Comment: 11 pages, 2 figures, containg additional supporting information in epaps.ps (results in tables, which are useful but not too important for the paper
    • …
    corecore